

DP IB Chemistry: SL

8.2 More About Acids

Contents

- * 8.2.1 Acid-base Titrations
- ***** 8.2.2 pH & [H⁺]
- * 8.2.3 Interpreting pH
- * 8.2.4 The Ionic Product of Water
- * 8.2.5 Acid-Base Calculations
- * 8.2.6 pH Meters & Universal Indicator
- * 8.2.7 Strong & Weak Acids & Bases
- * 8.2.8 Comparing Strong & Weak Acids

8.2.1 Acid-base Titrations

Your notes

Acid-Base Titrations

- The steps involved in performing a titration and titration calculation are outlined in Topic 1.2.9
 Titrations
- Acid-base titrations follow the same steps and are used to find the unknown concentrations of solutions of acids and bases
- Acid-base indicators give information about the change in chemical environment
- They change colour reversibly depending on the concentration of H+ ions in the solution
- Indicators are weak acids and bases where the conjugate bases and acids have a different colour
- Many acid-base indicators are derived from plants, such as litmus

Common Indicators Table

Indicator	Colour in acid	Colour in alkali
Litmus	pink	blue
Methyl orange	red	yellow
Phenolphthalein	colourless	pink

Copyright © Save My Exams. All Rights Reserved

- A good indicator gives a very sharp colour change at the equivalence point
- In **titrations** is it not always possible to use two colour indicators because of this limitation, so for example litmus cannot be used successfully in a **titration**
- When **phenolphthalein** is used, it is usually better to have the base in the burette because it is easier to see the sudden and permanent appearance of a colour (pink in this case) than the change from a coloured solution to a colourless one

Make sure you learn the colours of the common acid-base indicators

8.2.2 pH & [H+]

Your notes

pH & [H+]

- The acidity of an aqueous solution depends on the number of H+ (H₃O+) ions in solution
- The **pH** is defined as:

$$pH = -log_{10}[H^+]$$

- where [H⁺] is the concentration of H⁺ in mol dm⁻³
- The pH scale is a logarithmic scale with base 10
- This means that each value is 10 times the value below it. For example, pH 5 is 10 times more acidic than pH 6.
- pH values are usually given to 2 decimal places
- The relationship between concentration is easily seen on the following table:

pH & [H+] Table

[H ⁺]	Scientific notation	pН
1.0	10°	0
0.1	10 ⁻¹	1
0.01	10 ⁻²	2
0.001	10-3	3
0.0001	10 ⁻⁴	4
-	10 ^{-x}	×

Copyright © Save My Exams. All Rights Reserved

Head to www.savemyexams.com for more awesome resources

Worked example

 $10.0 \, \text{cm}^3$ of an aqueous solution of nitric acid of pH = 1.0 is mixed with 990.0 cm³ of distilled water. What is the pH of the final solution?

- **A**. 1
- **B.** 2
- **C**. 3
- **D.** 10

Answer:

The correct option is **C**.

- The total volume after dilution is 1000.0 cm³ so the concentration of H⁺ has been **reduced** by a factor of 100 or 10^{-2} , which means an increase of 2 pH units
- The final solution is therefore **pH 3**

Examiner Tip

Make sure you know how to use the antilog (base 10) feature on your calculator. On most calculators it is the 10^x button, but on other models it could be LOG⁻¹, ALOG or even a two-button sequence such as INV + LOG

8.2.3 Interpreting pH

Your notes

Interpreting pH

- The pH scale is a numerical scale that shows how acidic or alkaline a solution is
- The values on the pH scale go from 0–14 (extremely acidic substances have values of below 0)
- All acids have pH values of below 7, all alkalis have pH values above 7
- The lower the pH then the more acidic the solution is
- The higher the pH then the more alkaline the solution is

The pH scale showing acidity, neutrality and alkalinity

pH of acids

- Acidic solutions (strong or weak) always have more H+ than OH- ions
- Since the concentration of **H**⁺ is always **greater** than the concentration of **OH**⁻ ions, [H⁺] is always **greater** than 10⁻⁷ mol dm⁻³
- Using the pH formula, this means that the **pH of acidic solutions** is always **below** 7
- The higher the [H+] of the acid, the lower the pH

pH of bases

- **Basic** solutions (strong or weak) **always** have more OH⁻ than H⁺ ions
- Since the concentration of **OH**⁻ is always **greater** than the concentration of **H**⁺ ions, [H⁺] is always **smaller** than 10⁻⁷ mol dm⁻³
- Using the pH formula, this means that the **pH of basic solutions** is always **above** 7
- The higher the [OH-] of the base, the higher the pH

The pH of water

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

- Water at 298K has equal amounts of OH⁻ and H⁺ ions with concentrations of 10⁻⁷ mol dm⁻³
- To calculate the pH of water, the following formula should be used:

$$pH = -\log[H^{+}(aq)]$$

$$[H^{+}(aq)] = CONCENTRATION OF H^{+}/H_{3}O^{+} IONS$$

Copyright © Save My Exams. All Rights Reserve

pH =
$$-\log(10^{-7})$$

= 7

■ Thus, water has a pH of 7 at 298 K

8.2.4 The Ionic Product of Water

Your notes

The Ionic Product of Water

pH of water

• An equilibrium exists in water where few water molecules dissociate into proton and hydroxide ions

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

• The equilibrium constant for this reaction is:

$$K_c = \frac{[H^+][OH^-]}{[H_2O]}$$

$$K_{c} \times [H_{2}O] = [H^{+}][OH^{-}]$$

• Since the concentration the H⁺ and OH⁻ ions is very small, the concentration of water is considered to be a constant, such that the expression can be rewritten as:

$$K_{w} = [H^{+}][OH^{-}]$$

Where K_w (ionic product of water) = $K_c \times [H_2O]$

$$= 10^{-14} \, \text{mol}^2 \, \text{dm}^{-6} \, \text{at} \, 298 \, \text{K}$$

- The product of the two ion concentrations is always 10⁻¹⁴ mol² dm⁻⁶
- This makes it straightforward to see the relationship between the two concentrations and the nature of the solution:

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

[H ⁺]	[OH ⁻]	Type of solution
0.1	1 × 10 ⁻¹³	acidic
1 × 10 ⁻³	1 × 10 ⁻¹¹	acidic
1 × 10 ⁻⁵	1 × 10 ⁻⁹	acidic
1 × 10 ⁻⁷	1 × 10 ⁻⁷	neutral
1 × 10 ⁻⁹	1 × 10 ⁻⁵	alkaline
1 × 10 ⁻¹¹	1 × 10 ⁻³	alkaline
1 × 10 ⁻¹³	O.1	alkaline

Worked example

What is the pH of a solution of potassium hydroxide, KOH(aq) of concentration 1.0 \times 10⁻³ mol dm⁻³? $K_{\rm w}$ $= 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$

- **A**. 3
- **B**. 4
- **C**. 10
- **D**. 11

Answer:

The correct option is **D**.

- Since K_w = [H⁺] [OH⁻], rearranging gives [H⁺] = K_w ÷ [OH⁻]
 The concentration of [H⁺] is (1.0 × 10⁻¹⁴) ÷ (1.0 × 10⁻³) = 1.0 × 10⁻¹¹ mol dm⁻³
- So the **pH = 11**

8.2.5 Acid-Base Calculations

Your notes

Acid-Base Calculations

Using the relationships between pH, [H+] and [OH-] a variety of problems can be solved

$$pH = -log[H^+]$$
 and $K_w = [H^+][OH^-]$

• Test your understanding on the following worked examples:

Worked example

- 1. The pH of a solution of phosphoric acid changes from 3 to 5. Deduce how the hydrogen ion concentration changes
- 2. Water from a pond was analysed and found to have a hydrogen ion concentration of 2.6×10^{-5} mol dm⁻³. Calculate the pH of the pond water.
- 3. Determine the pH of a solution made by dissolving 5.00 g of potassium hydroxide in 250 cm³ of distilled water

Answers:

Answer 1: The initial pH of the phosphoric acid is 3 which corresponds to a hydrogen ion concentration of 1×10^{-3} mol dm⁻³:

$$[H+] = 10^{-pH}$$

$$[H+] = 1 \times 10^{-3} \, \text{mol dm}^{-3}$$

The final pH is 5, which corresponds to 1x10⁻⁵ mol dm⁻³

Therefore, the solution has decreased in $[H^+]$ concentration by 10^2 or 100 times

Answer 2: The pond water has $[H^+] = 2.6 \times 10^{-5} \text{ mol dm}^{-3}$.

$$pH = -log[H+] = -log(2.6 \times 10^{-5}) = 4.58$$

Answer 3: Potassium hydroxide ($M = 56.10 \text{ g mol}^{-1}$) is a strong base so the concentration of [OH-] is the same as the concentration of the solution as it fully dissociates:

$$KOH(s) \rightarrow K^{+}(aq) + OH^{-}(aq)$$

The concentration of KOH is

$$\frac{\frac{5.00}{56.10} \times 1000}{250 \, cm^3} = 0.357 \, \text{mol dm}^{-3} = [\text{OH}^{-}]$$

Using $K_w = [H^+][OH^-]$, and then rearranging $[H^+] = K_w/[OH^-]$

[H⁺] =
$$\frac{1 \times 10^{-14} \ mol^2 dm^{-6}}{0.357 \ mol \ dm^{-3}}$$
 = 2.80 x 10⁻¹⁴ mol dm⁻³

$$pH = -\log(2.80 \times 10^{-14}) = 13.55$$

8.2.6 pH Meters & Universal Indicator

Your notes

pH Meters & Universal Indicator

- The most accurate way to determine the pH is by reading it off a pH meter
- The pH meter is connected to the **pH electrode** which shows the pH value of the solution

The diagram shows a digital pH meter that measures the pH of a solution using a pH electrode

- A less accurate method is to measure the pH using universal indicator paper
- The universal indicator paper is dipped into a solution of acid upon which the paper changes colour
- The colour is then compared to those on a chart which shows the colours corresponding to different pH values

The diagram shows the change in colour of the universal indicator paper when dipped in a strong (HCI) and weak (CH $_3$ COOH) acid. The colour chart is used to read off the corresponding pH values which are between 1–2 for HCl and 3–4 for CH $_3$ COOH

8.2.7 Strong & Weak Acids & Bases

Your notes

Strong & Weak Acids & Bases

Strong acids

- A strong acid is an acid that dissociates almost completely in aqueous solutions
 - HCI (hydrochloric acid), HNO₃ (nitric acid) and H₂SO₄ (sulfuric acid)
- The position of the equilibrium is so far over to the **right** that you can represent the reaction as an irreversible reaction

Copyright © Save My Exams. All Rights Reserved

The diagram shows the complete dissociation of a strong acid in aqueous solution

- The solution formed is **highly acidic** due to the high concentration of the H+/H₃O+ ions
- Since the pH depends on the concentration of H+/H₃O+ ions, the pH can be calculated if the concentration of the strong acid is known

$$pH = -log[H^{+}(aq)]$$

 $[H^{+}(aq)] = CONCENTRATION OF H^{+}/H_{3}O^{+} IONS$

pH is the negative log of the concentration of H^+/H_3O^+ ions and can be calculated if the concentration of the strong acid is known using the stoichiometry of the reaction

Weak acids

- A weak acid is an acid that partially (or incompletely) dissociates in aqueous solutions
 - Eg. most organic acids (ethanoic acid), HCN (hydrocyanic acid), H₂S (hydrogen sulfide) and H₂CO₃ (carbonic acid)

• The position of the equilibrium is more over to the **left** and an equilibrium is established

The diagram shows the partial dissociation of a weak acid in aqueous solution

- The solution is **less acidic** due to the lower concentration of H⁺/H₃O⁺ ions
- Finding the pH of a weak acid requires using the acid dissociation constant, K_a but this not required at Standard Level, but only at Higher Level and is covered in Topic 18

Acid & Equilibrium Position Table

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Your notes	

	Strong Acid	Weak Acid
Position of Equilibrium	Right	Left
Dissociation	Completely(→)	Partially (⇌)
H ⁺ concentration	High	Low
рН	Use [strong acid] for [H ⁺]	Use K _a to find [H ⁺]
Examples	HCl HNO₃ H₂SO₄ (first ionisation)	Organic acids (ethanoic acid) HCN H ₂ S H ₂ CO ₃

Copyright © Save My Exams. All Rights Reserved

Strong bases

- A strong base is a base that dissociates almost completely in aqueous solutions
 E.g. group 1 metal hydroxides such as NaOH (sodium hydroxide)
- The position of the equilibrium is so far over to the right that you can represent the reaction as an irreversible reaction

The diagram shows the complete dissociation of a strong base in aqueous solution

• The solution formed is highly basic due to the high concentration of the OH⁻ ions

Weak bases

- A weak base is a base that partially (or incompletely) dissociates in aqueous solutions
 - NH₃ (ammonia), amines and some hydroxides of transition metals
- The position of the equilibrium is more to the **left** and an equilibrium is established

The diagram shows the partial dissociation of a weak base in aqueous solution

■ The solution is **less basic** due to the lower concentration of OH⁻ ions

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Base & Equilibrium Position Table

	Strong Base	Weak Base
Position of Equilibrium	Right	Left
Dissociation	Completely (→)	Partially (⇌)
OH concentration	High	Low
Examples	Group 1 metal hydroxides	NH ₃ Amines Some transition metal hydroxides

Copyright © Save My Exams. All Rights Reserved

Conjugate Pairs & Acid-Base Strength

■ The conjugate base of HCl is the chloride ion, Cl⁻, but since the reverse reaction is virtually non-existent the chloride ion must be a very weak conjugate base

$$HCl(g) \rightarrow H^+(aq) + Cl^-(aq)$$

acid conjugate base

- In general strong acids produce weak conjugate bases and weak acids produce strong conjugate bases
- A strong base is also fully ionized and is a good proton acceptor
- For example the hydroxide ion is a strong base and readily accepts protons:

$$OH^{-}(aq) + H^{+}(aq) \neq H_2O(I)$$

- The conjugate acid of the hydroxide ion is water, which is a weak conjugate acid
- In general strong bases produce weak conjugate acids

Examiner Tip

Hydrogen ions in aqueous solutions can be written as either as H_3O^+ or as H^+ however, if H_3O^+ is used, H_2O should be included in the chemical equation: $HCl(g) \rightarrow H^+(aq) + Cl^-(aq)$ OR $HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$ Some acids contain two replaceable protons (called 'dibasic') – for example, H_2SO_4 (sulfuric acid) has two ionisations: H_2SO_4 acts as a strong acid: $H_2SO_4 \rightarrow H^+ + SO_4^- +$

8.2.8 Comparing Strong & Weak Acids

Your notes

Comparing Strong & Weak Acids

- Strong and weak acids can be distinguished from each other by their:
 - **pH value** (using a pH meter or universal indicator)
 - Electrical conductivity
 - Reactivity

pH value

• An acid **dissociates** into H⁺ in solution according to:

$$HA \rightarrow H^+ + A^-$$

■ The stronger the acid, the greater the concentration of H* and therefore the lower the pH

pH value of a Strong Acid & Weak Acid Table

Acid	pH of 0.1 mol dm ⁻³ solution
HCl (strong)	1
CH ₃ COOH (weak)	2.9

Copyright © Save My Exams. All Rights Reserved

Electrical conductivity

- Since a stronger acid has a higher concentration of H⁺ it conducts electricity better
- Stronger acids therefore have a greater electrical conductivity
- The electrical conductivity can be determined by using a **conductivity meter**
- Like the pH meter, the conductivity meter is connected to an electrode
- The conductivity of the solution can be read off the meter

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

The diagram shows a digital conductivity meter that measures the electrical conductivity of a solution using an electrode

Reactivity

- Strong and weak acids of the same concentrations react differently with reactive metals
- This is because the concentration of H+ is greater in strong acids compared to weak acids
- The greater H^+ concentration means that more H_2 gas is produced in a shorter time

Copyright © Save My Exams. All Rights Reserved

The diagram shows the reaction of 0.1 mol dm $^{-3}$ of a strong acid (HCl) with Mg. The reaction produces a lot of bubbles and hydrogen gas due to the high concentration of H $^{+}$ present in solution

The diagram shows the reaction of 0.1 mol dm $^{-3}$ of a weak acid (CH $_3$ COOH) with Mg. The reaction produces fewer bubbles of hydrogen gas due to the lower concentration of H $^+$ present in solution

- Similar observations would be made in the reaction between strong and weak acids with **carbonates** and **hydrogencarbonates**, although the gas given off this time is carbon dioxide
- With **oxides** and **hydroxides**, there may not be a lot of visible changes although it is likely that they would **dissolve faster** in a strong acid than in a weak acid
- These reactions are also likely to produce **larger enthalpy changes** which could be seen in **higher temperature rises**

Examiner Tip

The above-mentioned properties of strong and weak acids depend on their ability to dissociate and form H^+ ions. Stronger acids dissociate more, producing a greater concentration of H^+ ions and therefore showing lower pH values, greater electrical conductivity and more vigorous reactions with reactive metals.